数学角平分线教学反思通用↘26篇(8)

发布时间:2023年03月14日    一键复制全文

数学角平分线教学反思 『范文21』

  这节课是在学生学习有理数乘方的基础上展开的.这节课的重点是学生能说出幂的乘方的运算性质,并用符号表示.难点在于利用同底数幂的乘法的运算性质进行运算.为了吸引学生的学习,我主要通过计算(23)2,(a4)3,(am)5的引入.让学生经历从特殊到一般的过程,让学生归纳出幂的乘方的运算性质.在这个过程中,培养了学生的自主学习,让学生充分交流各自的计算依据,发展学生的归纳能力和有条理的表达能力.对于公式的记忆,怕有些同学记不住.因此,我把底数比作是同学的脚底板,指数是学生的手指,同底数幂的乘法比作同学手牵手.将课知识形象化,有利于学生掌握新知识,更好的提高课堂效率.

  但是在课堂练习中,学生做题时候出现了很多错误,例如

  1.负数的奇次方与偶次方的符号的混淆,

  (-2a2)2= -4a4,(-2a2)3=8a6(奇负偶正法)

  2.乘方运算的错误,如32=32=6

  学生分不清各种运算性质是错误的关键,没有什么好的方法,只能多练,这是一个熟悉的过程。培养学生把解题后的再构应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。因此,在不增加学生负担的前提下,要求的作业是每节课后必须进行再构,利用作业的再构给老师提出问题,结合作业做一些合适的反思,对学生来说是培养思维能力的一项有效的活动。

  数学积的乘方教学反思范文五

  本节课的主要内容是积的乘方公式及其应用。从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。实际问题情境的设置,在于让学生感受到研究新问题的必要性,由于在应用当中需要用到同底数幂的乘法和幂的乘方,也是为了引导学生回忆巩固前面的知识,所以在上新课之前先复习它们的法则。积的乘方公式的理解及应用时这节课的重点,首先要让学生理解这个公式,而要让学生理解这个公式,就要让学生理解积的乘方的含义。导出性质后,要通过一些实例说明其表达式及语言叙述中每句话的含义,以期学生更好的理解,并能在理解的基础上会用它进行计算。因此在后面设计了几个例题,以便学生进一步理解公式。总的来说这节课还是讲解清楚了积的乘方的概念,并且也给了一定的时间给学生训练,学生初步掌握了概念并能对它进行简单的应用。这节课的主要易错点是对符号的处理,这点在备课的时候我也考虑到了,因此在例题里我设计了一些学生易错的题让他们训练。

  本节课存在的问题:1,、法则理解不到位。2、积的因式模糊不清。3、符号应该视为因式的一部分。在今后的教学中要注意以下的几点:第一、不能把学生看得很聪明,该下细的地方就要反复讲解。第二、对难点问题要析出几条线、不同角度加以说明。第三、多让学生之间讨论交流,让学生自己去体会总结。

数学角平分线教学反思 『范文22』

  《方程的意义》是一节数学概念课,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。下面就结合我所执教的《方程的意义》这节课,谈谈在教学中的做法和看法。

  回顾教学过程,我认为有如下几个特点。

  一、复习导入,激趣揭题

  该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。

  二、实践操作,建立方程模型

  本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。

  三、回归生活,体会方程

  在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。

  四、教学中的不足

  1、从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生利用算术方法的解题思路,对列方程造成了一定的干扰。

  2、对于利用天平解决实际问题虽然较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言,用含有未知数的数量关系表示时,存在困难。

  3、我应留给学生足够的时间去思考,而不应该替学生很快的说出答案。

  五、改进措施

  在以后的课堂中,我想首先是在课下的备课环节,重点的知识应重点去备,一定要详实,具体,充分考虑各种可能出现的情况,作到讲出一种,备出十种。备学生有时比备教材更为重要,稍微与学生脱节的备课都会在课堂教学中产生不小的影响。课上表述任务要求一定要具体,每一个形容,都会有不同的理解,学生也会完成到不同的层次上,要清晰,易理解,使学生能够按照要求操作、完成。

数学角平分线教学反思 『范文23』

  把数4分成3和1、2和2、1和3;然后想一想“几和几合成4”。教学的第一步是开放的,每名学生都有自己的一种放法,在交流中出现三种不同放法。这里的交流,一方面呈现了放法是多样的,找到了可能的多种放法。另一方面,这也为学生记忆4的组成提供形象支持。

  1、在操作中体验分与合,掌握研究数的组成的学习活动。

  通过操作认识数的组成是本单元的教学策略。所有例题和“试一试”都先把若干个物体分成两部分,再把分实物抽象成分解数,然后从数的分解体会数的组合。不断地让学生经历分与合的活动,感受分与合既是不同的,又是有联系的。

  第30页例题教学4的组成,分三步进行。首先把4个桃放在两个盘里,让学生边操作边体会“分”;接着把分4个桃抽盘里放3个桃,另一个盘里放1个桃,得出4分成3和1,让学生理解431表示什么意思,是怎么得到的。接着让学生思考通过中间和右边的分桃图又能得出什么。先半独立完成4分成2和几,再独立完成4分成几和几。教学的第三步要在“分”的基础上推理“合”:因为4分成3和1,所以3和1合成4。这道例题是本单元的第一道例题,教学任务不局限于4的组成,还有分与合的思想,研究数的组成的方法,这直接关系其他各数组成的教学。所以,必须让学生参加分桃的活动,经历由分实物抽象成分解数的过程。

  2、在分与合的活动中,逐渐提高智力活动的要求。

  在数的分与合中存在一些规律,发现和利用这些规律能提高探索活动的效率和记忆数的组成的水平。

  (1) “分”与“合”是数的组成的两个方面,是10以内数的加法和减法的重要基础。大多数学生喜欢计算加法从“合”的角度求和,计算减法从“分”的角度求差。教材引导学生逐渐掌握“分”与“合”的关系。

  ① 教学4的组成,先认识“分”,再认识“合”,把“分”与“合”分开教学,便于逐个理解含义,初步感受它们是有联系的。

  ② 教学5的组成,同时提出“分”与“合”的问题,引导学生从“分”立即说出“合”,使两者成为有机联系的整体。

《数学角平分线教学反思通用↘26篇(8).doc》
将本文的Word文档下载到电脑,方便收藏和打印
点击下载文档

Copyright©2018-2022 名站合同范文大全500 wangzhi500.com 版权所有 冀ICP备14004943号-1

声明:本网站中的作品如侵犯了您的权利,请在一个月内反馈给我们,我们会及时删除。