数学6.7减几教学反思 『范文6』
分数乘分数的意义是分数乘整数意义的扩展,记住分数乘法的计算法则并不困难,但让学生理解算理难度就比较大了。本节课教学的重点,难点是巩固和进一部理解分数乘法的意义,探索分数乘分数的计算法则。教学中我主要是采用“数形结合”的数学方法,让学生在实际操作中,直观体会分数乘分数的计算方法,并运用自己的语言进行归纳总结。首先在复习中,通过直观演示,引导学生依次折出长方形纸条的1/2,再取1/2的1/4和3/4,并让学生用乘法算式来表示这个过程,初步感受分数乘分数的意义和计算方法,接着以2/3×1/5、2/3×4/5例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。教学中我充分借助学生已有的知识基础,通过观察、实验、操作、推理等活动,通过例题的直观操作,通过知识的迁移帮助学生理解了分数乘分数的意义,初步掌握了分数乘分数的计算方法。在探究活动中,能引导学生主动参与分析、观察、猜想、验证、比较、归纳的过程,进一步发展了学生初步的演绎推理和合情推理能力。
通过本课教学我有了以下几点思考:
以形论数”和“以数表形”相结合。
分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本课教学中就显得尤其重要了.纵观教材,数形结合思想的渗透也有着不同的层次,例如分数乘法前两节课中是利用具体的实物图形,帮助学生从具体问题中抽象出数学问题;在分数乘法第三节课中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题。数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,再从直观变为抽象,也就是要讲“以形论数”和“以数表形”两个方面有机的结合起来,只有完整的使学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”
经历探究过程,优化互动生成。
“新课程标准”指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”这一新的理念说明:数学教学活动将是学生经历一个数学化的过程,是学生自己建构数学知识的活动。因此,教学本课时力图让学生亲自经历学习过程。即让学生在动手操作——探究算法——举例验证——交流评价——法则统整等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去经历、去体验,去感悟、去创造。学习是孩子自己的事,把探究的权力真正还给学生后,学生的表现会让你大吃一惊。在两个班的上课中,关于分数乘分数法则都有不同的验证和说明的方法出现,这些方法远远超出课前的预设。究其原因,就是学习变成了自己的事,学的更主动,潜能发挥到了极至。
数学6.7减几教学反思 『范文7』
一、注重了情境的导入,提高孩子们的参与热情。
本节课,开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。
在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。
数学6.7减几教学反思 『范文8』
本节课的教学内容是角的大小的比较、画相等的角。依照新数学课程标准的要求,结合具体内容,从提高学生数学兴趣入手,让学生经历同化新知识、构建新意义的过程,从而更好地掌握必要的基础知识与基本技能.学生通过小组讨论,动手实验,在轻松的氛围中完成教学任务,增强学好数学的愿望和信心。在教师的引导下使学生体验类比和转化的思想。
一、通过对教材的深入分析,我在上课时认真把握了以下几点:
1.首先在知识的过程中,通过对导入问题的设置,达到对旧的知识进行适当的复习的同时引入角 的比较,引人与新知识的讲解融会贯通,一气呵成利用学生已经具备的知识迁移的能力,用类比的思想引出角的大小的比较。
2.在角的形象比较中,要努力引导学生的思维方向。通过开放性问题的提出,充分发挥学生的想像力,拓展学生的思维空间,有助于学生灵活地学习知识。
3.问题的设计给学生留有充分探索和交流的空间,随着问题的步步深人,学生的思维得到深化,突出了本课时的重点,也分散了难点,最后达到突破难点的目的。
4.作图的折纸操作应作为一个补充知识,不必强求知识的记忆。动手操作、相互交流等活动,又为学生提供了广阔的思维空间,培养学生的实践能力和创新能力。
5.在画时,画相等的角是通过让学生自己动手操作和探究,如何画应是老师必须给予提示与讲解的,特别是如何放角的顶点与边。
6.角平分线的知识是一个几何中的重要知识点,虽然在此不是重点,但在教学中,老师不能放松,而是要加强讲解。
上课时采用的教学流程设计如下:
(1)创设情景以同学们比较熟悉的公园导游路线图引入角的大小比较。
(2)利用课件,叠合法比较角的大小展示叠合法的操作。
(3)回忆用度量法,使学生掌握角的大小的比较的一般方法。
(4)问题探究,引导学生探索角的和与差的运算。
(5)问题引申,引导学生发现角平分线,并归纳角平分线定义
(6)典型例题,强化学生对所学知识的认知和理解。
本课,自始至终渗透着实验、观察、类比、归纳等数学思想方法,重视知识的发生发展过程。充分反映了以学生为主教师为导的新理念,同时也培养了学生爱思考,善交流的良好学习惯。
二、存在的问题
通过这节课的教学,我发现了一些在教学中存在的问题,如在教学预想中,没有估计到学生角这部分知识的遗忘,部分题目的设置违背了学生的认知规律,学生分析起来有些吃力,对学生学习热情和学习兴趣激发受到一定的影响。
另外,在活动和提问的过程中分析过细,讲解过多,没有给学生充分的探索和明晰的时间和空间。
三、改进措施
针对本节课暴露的问题,我在今后的教学中应该加强备课;考虑学生的认知能力和已有的知识水平;设置问题要具有灵活性、针对性、可操作性,给学生更多的思维想象空间,将角的比较与运算这节课分作角的比较和角的运算两节课来完成,努力使课堂教学向着严谨、有序、高效的方向发展。