中考状元的学习方法总结 『范文18』
新学期开始,很多同学由初中步入到高中,然而对于这个跨度,很多同学都不适应,尤其是对高中阶段的语文更是一筹莫展,想要学习好高中语文就要有正确的学习方法,希望下面的方法对你有所帮助
1、多读:阅读课文是复习的第一步。通过阅读,把握全文大意,了解作者情感、文章特色等知识点。不同类型的课文需要不同的读法:教读课文需精读,字、词、句、篇等各个知识点全方位掌握,精彩语段达到成诵;自读课文需泛读,有的还需跳读,一目十行,以求提高阅读速度。阅读速度,也是近几年高考考查项目之一。
2、多划:即在阅读课文同时,把文中的重点句、中心句、名句以至生字、生词,用不同的符号勾画出来,既能加深印象,又便于复习巩固,一目了然。遇到规范句子,不妨划分句子成分,复句还需标明关系,典型语段要划分层次、归纳层意。遇到疑难,还要作标记,便于以后向老师同学求教。
3、多查:查什么呢查工具书。字典、词典、参考资料,只要用得上,尽可能发挥工具书的作用。亲自查找答案,是探索学习方法、摸索学习规律的过程,也是提高运用工具书能力的过程。对于似曾相识的语句,不妨查一查以往学过的课文,把新旧知识联系起来,“温故而知新”。查出的答案经过分析辨别,理解能力又能得到提高。
4、多问:“三人行,必有我师焉”。复习过程免不了有疑难,要独立钻研,实在解决不了的,要善于向老师、同学请教。有时自己向老师请教一个问题,老师很可能不止讲一个问相关知识联系起来,使你融会贯通。
5、多写:俗话说,眼看十遍,不如手过一遍。无论平时学习还是考试,有的同学往往把常用字词写错,为什么呢就是缺少写的训练。生字、生词、重点语句不妨在理解记忆的基础上,反复写一写。又如一些作文题,往往看似容易写来难,也要动笔写写,切忌眼高手低。
6、多练:就是通过做练习题,检验自己对知识掌握的程度。做题要把考题的目的、意图弄清,要注意归纳总结,寻找规律,触类旁通,增强应试能力。做练习题,既要在老师指导下进行,也要自觉地做。我们反对搞“题海战术”,但不做一定数量的练习题,也谈不上质量。练然后知不足,及时反馈矫正,以求牢固掌握所学知识和技能。
7、多想:复习的内容可以通过“想”来巩固。可以从点到面,也可以从整体到部分,或纵向或横向,把知识点有机地联系起来,形成知识体系,印在脑海里。当某个知识点联想不起来时,要经过查找及时巩固。想的时空受限制,无论课上、课下,还是校内、校外,都可以尽情地利用时空。当你“山穷水尽”之时,通过联想,也许会步入“柳暗花明”之境。
中考状元的学习方法总结 『范文19』
第一,认真听老师讲课。
这是我取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差,更切忌一边讲话一边听讲。其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可,一字之间就隐藏玄机无限。听讲时还要注意记笔记。一次老师讲了一个高难度的几何题,我一时没有听懂,多亏我记下了这道题以及解法,回家后仔细琢磨,终于理解透了,以至在一次竞赛中我轻而易举地解出了类似的一道题,获得了宝贵的10分。上课还要积极举手发言,举手发言的好处可真不少!①可以巩固当堂学到的知识。②锻炼了自己的口才。③那些模糊不清的观念和错误能得到老师的指教。真是一举三得。总之,听讲要做到手到、口到、眼到、耳到、心到。
第二,课外练习。
孔子曰:“学而时习之”。课后作业也是学习和巩固数学的重要环节。我很注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。我经常是这样做的,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张,也不会顾此失彼了。
第三,复习、预习。
对数学的复习,预习我定在每天晚上,在完成当天作业后,我将第二天要学的新知识简要地看一看,再回忆一下老师已讲过的内容。睡觉时躺在床上,脑海里再像看电影一样将老师上课的过程“看”一遍,如果有什么疑难,我立即爬起来看书,直到搞懂为止。每个星期天我还作一星期功课的小结复习、预习。这样对学数学有好处,并掌握得牢固,就不会忘记了。
第四,提高。
在完成作业和预习、复习之后,我就做一些爬坡题。做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教师长和同学。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。
中考状元的学习方法总结 『范文20』
代数学从高等代数的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数,线性代数等。代数学研究的对象也已不仅是数,还有矩阵,向量,向量空间的变换等。对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于书的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。的算为效men:比如:群,环,域等。
多项式是一类最常见,最简单的函数,他的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。
多项式代数所研究额内容,包括整除性理论,最大公因式,重因式等。这些大体和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,多对应的代数方程就没有解。
我们把一次方程叫做线性方程,讨论线性方程的代数叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。
行列式的概念最早是由十七世界日本数学家孝和提出来的。他在写了一部叫做《解伏题之法》的著作,标题的意思是解行列式问题的方法,书里对行列式的概念和他的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比总结并提出了行列式的系统理论。
行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。
因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可是行数和列数相等也可以不相等。
矩阵和行列式是两部完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量,这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学,物理,科技等方面都有十分广泛的应用。
高等代数在初等代数的基础上研究对象进一步扩充,还引入了最基本的集合,向量和向量空间等。这些量具有和数相类似的运算特点,不过研究的方法和运算的方法都更加繁琐。
集合是具有某种属性的事物的全体:向量是除了具有数值,同时还具有方向的量,向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的元素已经不只是数,而是向量了,其运算性质也有很大的不同了。
在高等代数的发展过程中,许多数学家都做出了杰出的贡献,伽罗华就是其中一位,伽罗华在临死前预测自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促的把自己生平的数学研究心得扼要写出,并附以论文手稿。他在给朋友舍瓦利叶的信中说:我在分析方法做出了一些新发现,有些是关于方程论的,有些是关于整函数的……,公开请求雅可比或高斯,不是对这些定理的证明的正确定而是对这些定理的重要性发表意见。我希望将来有人发现消除所有这些混乱对他们是有益的。
伽罗华死后,按照他的遗愿,舍瓦利把他的信发表在《百科评论》中。他的论文手稿过了14年,才由刘维尔编辑出版了他的部分文章,并向数学界推荐。随着时间的推移,伽罗华的研究成果的重要意义愈来愈为人们认识。伽罗华虽然十分年经,但他在数学史上作出的贡献,不仅解决了几个世纪以来一直没有解决的代数解问题,更重要的是他在解决这个问题提出了群的概念,并由此发展了一系列一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革。从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步发展。
高等代数不是一门孤立的学科,它和几何学,分析数学等有密切联系的同时,又具有独特的方面。
首先,代数运算是有限次的,而且缺乏连续性的概念,也就是说,代数学主要是关于离散性的。尽管在现实中连续性和不连续性是辩证统一的,但是为了认识现实,有时候需要把它分成几个部分,然后分别的研究认识,在综合起来,就得到对现实的总的认识。这是我们认识事物的简单但是科学的重要手段,也是代数学的基本重要思想和方法。代数学注意到离散关系,并不能说明它的特点,时间已经多次,多方位的证明了代数学的这一特点是有效的。
其次,代数学除了对物理,化学等学科有直接的实践意义,就数学本身来说,代数学也有重要的地位。代数学中发生的许多新的概念和思想,大大丰富了数学的许多分支,成为众多学科的共同基础。
学习高等代数,学习它的理论十分重要,但学习它的同时潜心领悟它光辉夺目的数学思想则尤为可贵,因为它指导我们的学习,对我们的生活,工作等其他社会活动方法具有广泛的导向作用。